Modules with finite Cousin cohomologies have uniform local cohomological annihilators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finiteness of Cousin Cohomologies

The notion of the Cousin complex of a module was given by Sharp in 1969. It wasn’t known whether its cohomologies are finitely generated until recently. In 2001, Dibaei and Tousi showed that the Cousin cohomologies of a finitely generated A-module M are finitely generated if the base ring A is local, has a dualizing complex, M satisfies Serre’s (S2)-condition and is equidimensional. In the pres...

متن کامل

Annihilators of Permutation Modules

Permutation modules are fundamental in the representation theory of symmetric groups Sn and their corresponding Iwahori–Hecke algebras H = H (Sn). We find an explicit combinatorial basis for the annihilator of a permutation module in the “integral” case — showing that it is a cell ideal in G.E. Murphy’s cell structure of H . The same result holds whenever H is semisimple, but may fail in the no...

متن کامل

Stanley-reisner Ideals Whose Powers Have Finite Length Cohomologies

We introduce a class of Stanley-Reisner ideals called generalized complete intersection, which is characterized by the property that all the residue class rings of powers of the ideal have FLC. We also give a combinatorial characterization of such ideals.

متن کامل

Annihilators of tensor density modules

We describe the two-sided ideals in the universal enveloping algebras of the Lie algebras of vector fields on the line and the circle which annihilate the tensor density modules. Both of these Lie algebras contain the projective subalgebra, a copy of sl2. The restrictions of the tensor density modules to this subalgebra are duals of Verma modules (of sl2) for Vec(R) and principal series modules...

متن کامل

Annihilators of Artinian modules compatible with a Frobenius map

In this paper we consider Artinian modules over power series rings endowed with a Frobenius map. We describe a method for finding the set of all prime annihilators of submodules which are preserved by the given Frobenius map and on which the Frobenius map is not nilpotent. This extends the algorithm by Karl Schwede and the first author, which solved this problem for submodules of the injective ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2008

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2007.11.021